Department of the Navy SBIR/STTR Transition Program

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. NAVSEA ##2022-0334

Topic # N20A-T012

Electromagnetic Interference (EMI) Resilient, Low Noise Figure, Wide Dynamic Range of Radio Frequency to Photonic (RF Photonic) Link Applied NanoFemto Technologies LLC

WHO

SYSCOM: NAVSEA

Sponsoring Program:

Transition Target: To replace the bulk coax cable in Naval radar and sensor frontend systems with RF photonics links with lighter weight, higher bandwidth, smaller sizes, as well as less electromagnetic interference

TPOC: (401) 832-6887

Other Transition Opportunities: High-performance

WHEN

U.S. Navy image 180614-N-GF511-0020

communications systems in airplanes, satellites, as well as 5G/6G communication systems

Contract Number: N68335-22-C-0196 Ending on: Feb 20, 2023

Milestone	Risk Level	Measure of Success	Ending TRL	Date
Phase I final report	N/A	Demonstrate the feasibility	3	1st QTR FY22
Phase II base	Low	Demonstrate a prototype	4	2nd QTR FY23
Phase II option I	Low	Package the prototype	5	2nd QTR FY24
Phase II option II	Low	Demonstrate the prototype in a subsystem	6	2nd QTR FY25

WHAT

Operational Need and Improvement: US Navy aircraft carriers and ships need high-performance RF antennas and transmission and receiving systems with reduced SWaP, low EMI, and high bandwidth. The technology can significantly reduce the SWaP, EMI, and increase the bandwidth.

Specifications Required: Packaged RF photonic link transmitter < 10x10x30mm; 3dB bandwidth >20GHz; SFDR greater than 114dB·Hz2/3; > 10mA photocurrent generated at the receiver

Technology Developed: Demonstrated the feasibility of the technology

Obtained optimal designs

Optimized the device fabrication parameters Designed the high-performance PV cells.

Warfighter Value: Reduce the SWaP, EMI, and enhance the bandwidth for warfighters' surveillance and communication systems.

HOW

Projected Business Model: Develop prototypes in the STTR Phase II program, perform technology transition, and collaborate with prime contractors and integrate the technology with their systems

Company Objectives: Develop, mature, and commercialize the technology for the defense and commercial communication applications.

Potential Commercial Applications: 5G/6G communication systems;

RF remote sensing

Radio astronomy

Contact: Dr. Xuejun Lu, Co-founder xuejun.lu@appliednanofemto.com (978) 761-4293